Page 42 - Программа - Всероссийский конгресс с международным участием «Нейронауки: интеграция теории и практики», 18-19 ноября 2022 года, Онлайн
P. 42
Известия Российской
ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ Том 41, № 4, 2022 Военно-медицинской академии
391
3. Sedelis M., Schwarting R.K., Huston J.P. Behavioral phe- 13. Fillebeen C., Descamps L., Dehouck M.P., et al. Receptor-
notyping of the MPTP mouse model of Parkinson’s dis- mediated transcytosis of lactoferrin through the blood-brain
ease // Behav. Brain Res. 2001. Vol. 125, No. 1–2. P. 109–125. barrier // J. Biol. Chem. 1999. Vol. 274, No. 11. P. 7011–7017.
DOI: 10.1016/s0166-4328(01)00309-6 DOI: 10.1074/jbc.274.11.7011
4. Cao Q., Qin L., Huang F., et al. Amentoflavone protects dopami- 14. Suzuki Y.A., Lopez V., Lönnerdal B. Mammalian lactoferrin recep-
nergic neurons in MPTP-induced Parkinson’s disease model mice tors: structure and function // Cell Mol. Life Sci. 2005. Vol. 62, No. 22.
through PI3K/Akt and ERK signaling pathways // Toxicol. Appl. Phar- P. 2560–2575. DOI: 10.1007/s00018-005-5371-1
macol. 2017. Vol. 319. P. 80–90. DOI: 10.1016/j.taap.2017.01.019 15. Rosa A.I., Duarte-Silva S., Silva-Fernandes A., et al. Taurour-
5. Jackson-Lewis V., Przedborski S. Protocol for the MPTP mouse sodeoxycholic Acid Improves Motor Symptoms in a Mouse Model
model of Parkinson’s disease // Nat. Protoc. 2007. Vol. 2, No. 1. of Parkinson’s Disease // Mol. Neurobiol. 2018. Vol. 55, No. 12.
P. 141–151. DOI: 10.1038/nprot.2006.342 P. 9139–9155. DOI: 10.1007/s12035-018-1062-4
6. Gubellini P., Kachidian P. Animal models of Parkinson’s disease: 16. Mandillo S., Tucci V., Hölter S.M., et al. Reliability, robustness,
An updated overview // Rev. Neurol. (Paris). 2015. Vol. 171, No. 11. and reproducibility in mouse behavioral phenotyping: a cross-labo-
P. 750–761. DOI: 10.1016/j.neurol.2015.07.011 ratory study // Physiol. Genomics. 2008. Vol. 34, No. 3. P. 243–255.
7. García-Montoya I.A., Cendón T.S., Arévalo-Gallegos S., Rascón- DOI: 10.1152/physiolgenomics.90207.2008
Cruz Q. Lactoferrin a multiple bioactive protein: an overview // 17. Carola V., D’Olimpio F., Brunamonti E., Mangia F., Renzi P.
Biochim. Biophys. Acta. 2012. Vol. 1820, No. 3. P. 226–236. Evaluation of the elevated plus-maze and open-field tests for the assess-
DOI: 10.1016/j.bbagen.2011.06.018 ment of anxiety-related behaviour in inbred mice // Behav. Brain Res.
8. Chen Y., Zheng Z., Zhu X., et al. Lactoferrin Promotes Early Neu- 2002. Vol. 134, No. 1–2. P. 49–57. DOI: 10.1016/s0166-4328(01)00452-1
rodevelopment and Cognition in Postnatal Piglets by Upregulating 18. Ferger B., Teismann P., Earl C.D., Kuschinsky K., Oertel W.H.
the BDNF Signaling Pathway and Polysialylation // Mol. Neurobiol. The protective effects of PBN against MPTP toxicity are independent
2015. Vol. 52, No. 1. P. 256–269. DOI: 10.1007/s12035-014-8856-9 of hydroxyl radical trapping // Pharmacol. Biochem. Behav. 2000.
9. Копаева М.Ю., Алчинова И.Б., Нестеренко М.В., и др. Лак- Vol. 65, No. 3. P. 425–431. DOI: 10.1016/s0091-3057(99)00229-4
тоферрин положительно влияет на динамику восстановления 19. Xu S.F., Zhang Y.H., Wang S., et al. Lactoferrin amelio-
физиологических и поведенческих показателей мышей при rates dopaminergic neurodegeneration and motor deficits in
остром гамма-облучении // Патогенез. 2020. T. 18, № 1. C. 29–33. MPTP-treated mice // Redox. Biol. 2019. Vol. 21. P. 101090.
DOI: 10.25557/2310-0435.2020.01.29-33 DOI: 10.1016/j.redox.2018.101090
10. Kopaeva M.Y., Alchinova I.B., Cherepov A.B., et al. New Prop- 20. Liu H., Wu H., Zhu N., et al. Lactoferrin protects against iron
erties of a Well-Known Antioxidant: Pleiotropic Effects of Hu- dysregulation, oxidative stress, and apoptosis in 1-methyl-4-phe-
man Lactoferrin in Mice Exposed to Gamma Irradiation in a Sub- nyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s dis-
lethal Dose // Antioxidants (Basel). 2022. Vol. 11, No. 9. P. 1833. ease in mice // J. Neurochem. 2020. Vol. 152, No. 3. P. 397–415.
DOI: 10.3390/antiox11091833 DOI: 10.1111/jnc.14857
11. Kopaeva M.Y., Cherepov A.B., Nesterenko M.V., Zarayskaya I.Y. 21. Rousseau E., Michel P.P., Hirsch E.C. The iron-binding protein
Pretreatment with Human Lactoferrin Had a Positive Effect on the lactoferrin protects vulnerable dopamine neurons from degeneration
Dynamics of Mouse Nigrostriatal System Recovery after Acute by preserving mitochondrial calcium homeostasis // Mol. Pharmacol.
MPTP Exposure // Biology (Basel). 2021. Vol. 10, No. 1. P. 24. 2013. Vol. 84, No. 6. P. 888–898. DOI: 10.1124/mol.113.087965
DOI: 10.3390/biology10010024 22. Копаева М.Ю., Азиева А.М., Черепов А.Б., и др. Лак-
12. Faucheux B.A., Nillesse N., Damier P., et al. Expression of lacto- тоферрин человека усиливает экспрессию транскрипци-
ferrin receptors is increased in the mesencephalon of patients with онного фактора c-Fos в нейрональных культурах в усло-
Parkinson disease // Proc. Natl. Acad. Sci. USA. 1995. Vol. 92, No. 21. виях стимуляции // Патогенез. 2021. T. 19, № 1. C. 74–78.
P. 9603–9607. DOI: 10.1073/pnas.92.21.9603 DOI: 10.25557/2310-0435.2021.01.74-78
REFERENCES
1. Litvinenko IV, Trufanov AG, Yurin AA. Parkinson’s disease and 6. Gubellini P, Kachidian P. Animal models of Parkinson’s disease:
parkinsonism syndromes. Kazan; 2018. 54 p. An updated overview. Rev Neurol (Paris). 2015;171(11):750–761.
2. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and mod- DOI: 10.1016/j.neurol.2015.07.011
els. Neuron. 2003;39(6):889–909. DOI: 10.1016/s0896-6273(03)00568-3 7. García-Montoya IA, Cendón TS, Arévalo-Gallegos S, Rascón-Cruz
3. Sedelis M, Schwarting RK, Huston JP. Behavioral phenotyping Q. Lactoferrin a multiple bioactive protein: an overview. Biochim Bio-
of the MPTP mouse model of Parkinson’s disease. Behav Brain Res. phys Acta. 2012;1820(3):226–236. DOI: 10.1016/j.bbagen.2011.06.018
2001;125(1–2):109–125. DOI: 10.1016/s0166-4328(01)00309-6 8. Chen Y., Zheng Z., Zhu X., et al. Lactoferrin Promotes Early Neu-
4. Cao Q, Qin L, Huang F, et al. Amentoflavone protects dopami- rodevelopment and Cognition in Postnatal Piglets by Upregulating
nergic neurons in MPTP-induced Parkinson’s disease model mice the BDNF Signaling Pathway and Polysialylation. Mol Neurobiol.
through PI3K/Akt and ERK signaling pathways. Toxicol Appl Phar- 2015;52(1):256–269. DOI: 10.1007/s12035-014-8856-9
macol. 2017;319:80–90. DOI: 10.1016/j.taap.2017.01.019 9. Kopaeva MY, Alchinova IB, Nesterenko MV, et al. Lactoferrin benefi-
5. Jackson-Lewis V, Przedborski S. Protocol for the MPTP mouse cially influences the recovery of physiological and behavioral indexes in
model of Parkinson’s disease. Nat Protoc. 2007;2(1):141–151. mice exposed to acute gamma-irradiation. Patogenez [Pathogenesis].
DOI: 10.1038/nprot.2006.342 2020;18(1):29–33. (In Russ.) DOI: 10.25557/2310-0435.2020.01.29-33
DOI: https://doi.org/10.17816/rmmar111944

